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Abstract

This paper deals with the stable c-server queue with renewal

input. The service time distributions may be different for the

various servers. They are however all probability distributions

of phase type. It is shown that the stationary distribution of

the queue length at arrivals has an exact geometric tail of rate

n, 0 < n < 1. It is further shown that the stationary waiting

time distribution at arrivals has an exact exponential tail of

decay parameter & > 0. The quantities n and C may be evaluated

together by an elementary algorithm. For both distributions, the

multiplicative constants which arise in the asymptotic forms may be

fully characterized. These constants are however difficult to

compute in general.
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Very few algorithmically tractable results are known for

multi-server queues, except in the restrictive case where the

service time distributions are exponential. In this paper, we

obtain results on the tail behavior of the stationary distributions

of the queue length and the waiting time for a c-server queue with

renewal input. The various servers are allowed to be heterogeneous,

i.e. the service time distributions may be different for different

servers. The c service time distributions are however required

to be of phase type.

If Pm and W(x) denote respectively the stationary proba-

bilities that a customer arriving to the queue finds at least m

customers in the system and that he has to wait for a time at most

x, then we establish the asymptotic formulas

P K K + 001m), as m. ,

and

1 -W(x) a K, e"Cx + Q(e-X", as x ,

where K1 - K. The constants rj and E, which satisfy 0 < n 1

and > ' 0, will be shown to satisfy a system of equations, which

may easily be sQlved by elementary numerical procedures. The

positive constants K and K1 will be fully characterized, but

their direct numerical evaluation is seen to be difficult, in

general.

L|
*1-4



4

In the course of the discussion, a number of results of

theoretical interest on the GI/PH/c queue with heterogeneous

servers will be obtained. Because of the huge dimensions of the

matrices, which arise in these results, their feasibility for

algorithmic Implementation Is limited to particular cases.

The proofs of the various results in this paper rely heavily

on the elementary properties of phase type distributions £4, 5, 8)

and on the theory of block-partitioned stochastic matrices with a

matrix-geometric invariant vector £6, 7, 83. Specific references

will be given for each prior result, which is used, but no easily

available proofs will be repeated. The particular results for the

GI/PH/l queue were established in Neuts [8, 9). Corresponding

results for the PH/PH/c queue with identical servers are discussed

in Takahashi £11], while Iterative numerical procedures for that

model are proposed in Takahashi and Takaml [10].

The formal description of the model is as follows. Customers

arrive to a c-server system according to a renewal process with

Interarrival time distribution F(.) of finite mean X' . The

distribution F(') satisfies F(O+) - 0. The service time distri-

bution of a customer may depend on the server to which he gains

access. Services by the J-th server, 1 s j % c, have a conon

distribution of alhse type, with irreducible representation

j(a ), 5(J)] where PQ) is a probability row-vector of dimension

v(J) and S(J) Is a square, stable matrix of order v(J). The

corresponding vector S0(J) is defined by S°(J) - S(Q)t. Through-

out this paper, the symbol e will denote a column vector with all
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its components equal to one and of dimension appropriate to the

formula in which it occurs. The mean service time VI'(J) of the

J-th server is given by l'(j) = , §(j)S 1 (J) e.

It will be assumed that all service times are independent of

the arrival process. For any k a 2 successive customerq, the

service times are assumed to be conditionally independent, given

the labels of the servers by vhich they are processed. Under the

stated assumptions, the model has a Markov chain, embedded at the

successive epochs of arrival. Its states are of three types.

For I z c, the state described by CI, hi, h2 , .,, hc) signifies

that, i nediately prior to the arrival, -there are i customers in.

Ithe system and that for 1 : j 5 c, the J-th server is in the

phase h of his PH-distribution. The set of all such states with
a

a fixed index i will.be denoted by i. The states (c-l; hi, ... , hc )
C

are similarly defined, but one of the phase states now corresponds

to the initial service phase, selected by the arriving customer.

The remaining states correspond to the case where, prior to the

arrival, there are fewer than c - 1 customers in the system. The

precise labeling of these states is immaterial to our discussion.

The set of all such states will be denoted by E. The states

(I, hl, ..., hc), for i k c - 1, 1 s J s c, 1 s hj s v(J), are

listed in lexicographic order. The states In E u(€-l) are called

the boundary states.

In order to define the transition probability matrix P of

the embedded Markov chain, we introduce the matrices P (rt),

bZ~t" 2,
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for r a 0, t 0 0 and 1 3 s c. These matrices satisfy the

differential equations

PJ(ot) * P(Ot) S(3),

PJCrt) - Pj(rt) S(j) + P jCr-l,t) S0(j)* PQj),

for r a 1, with the Initial conditions Pj(r,0) P 6r0 I, for

r a 0. Their significance is the same as in C53 or [6].

We note that

(2) E P (r,t) zr = exp{(S(J) + z S°(j) (J)Jt},
r 0

for t a 0, 0 s z s 1.

The matrices Ak, k z 0, are defined by

(3) Ak = E Pl(rlt) * P2 (r2,t) I ... A Pc(rc,t) d F(t),

for k a 0. The summation is over all c-tuples (r!, ..., r ),

which satisfy r1 z O, ..., rc z 0, r1 + ... + r. - k. The symbol

0 stands for the Kronecker product of matrices. As shown in [6],

the matrices P (r,t) are positive for r k 1, t > 0, and 1 s j s c.

It is therefore clear that the matrices Ak, k a c, are positive.

The matrices Ak, k a 0, are of order m, given by

c
(4) m- H 1().

From Formulas (2) and (3), it follows that



(5) AO(z) k 0 Ak z
k

k 0

001 exp([8(l)+zS0C1)BE(l)JIt~I..gIVexpCS(c)+zS(c)o(c))ttdF(t).

The matrix A*(z) is positive for 0 < z s 1.

The transition probability matrix P is now given by

E c'i I C c+l c+2 . lot
- , ~ I

E 0 0 0 0

A-l 0 0 0~I
i0

A1  A0 0 0-- 0

c~l A2  Al A0  0 ...
(6) 0

c+2 A 3  A2  A1  A0

c+3 A4 A A2 A1

The elements in the columns, labeled E and c-l, are immaterial

to our discussion. They are, in general, exceedingly complicated

and depend on the rule by which arriving customers are assigned to

free servers. Explicit, but highly involved expressions are given

for the case c a 2, in Chapter 4 of [83. In all properly defined

cases, the matrix P is irreducible.

The matrix A I ! Ak * A*(1), is a strictly positive, stochastic
k*O

" -



matrix. Let _(J) be the positive probability vector satisfying

(7) e() ES(J) + S(J) _j)] * 0 e() e - 1,

for 1 3 s c, then it readily follows from (5) that the m-vector _,

which satisfies w A = vr, vr e a 1, is given by

(8) w- e(1) m ... m e(c).

By using elementary formulas, proved in [5), we may also express

the vector k_ - ! I Ak e, explicitly in terms of the data of the
k=1

model. We then easily verify that

c-i(9) 00m - A, E VI C0).

As shown in Chapter 1 of [83, the Markov chain P is positive re-

current if and only if w B' > 1, or equivalently

(10) AE c1-(j).
J=1

The arrival rate A'-  to the queue must be less than the combined

service rate of the c servers. This intuitive equilibrium con-

dition may also be proved by applying the main theorem in Lavenberg

C3).

The invariant probability vector x of P is now partitioned

into vectors xE x-I c x-+l' "'', where the vectors x, ik c - 1,

are m-vectors and the vector IE is of dimension card(B).

It then follows from general results, proved in 17) or [8),

that

, - - - *0
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) RI - c + 1 , for i k c-i,

where the positive matrix R is the minimal nonnegative solution

to the nonlinear matrix equation

(12) R Rk
k-0

The vectors EE and c- are determined, up to a multiplicative

constant, by solving a homogeneous system of linear equations.

That constant is determined by use of the normalizing equation

(13) 1 e + i (I-R)-1 e - 1.

The spectral radius n a sp(R), is the unique solution in

(0,1) of the equation

(1i) z - X(z),

where X(z) is the spectral radius of A*(z). The matrix R is

also the unique nonnegative solution of spectral radius less than

one to the equation (12).

2. PreliminarX Results

The probability distribution of phase type with irreducible

representation (j(J), S(J)] has a rational Laplace-Stieltjes trans-

form, given by

(15) *j(s) - P(J) [sI-S(J)] -  So(j), for Re s z 0.

Let the abscissa of convergence of (s) be -T< 0. The

function *(s) is then defined, positive and convex decreasing

on the interval (-Tj,).

.. . . . . .. .7o



10

Lemma 1.

The equation

(16) z *j(s) - 1,

has a unique real solution sj = *j(z), for every z in (O,1J.

The function *j (-) satisfies -T < * (z) : 0, and is strictly

increasing on (0,13. Moreover I (0+) = -T,, and *'(i) -

The quantity *j(z) is the eigenvalue of maximal real part

of the matrix S(J) + zS0 (j) §(J). The corresponding left eigen-

vector u(j,z), normalized by u(J,z) e = 1, is given by

(17) u(J,z) = z(z-l)-I i,(z) (J)1* (z)I-S(J) -1 ,  for 0 < z 1

= e(J), for z = .

Proof

Essentially the same results were proved in £11]. For ease

of reference, we repeat the proof. The first set of properties of

*j (z) follow readily from consideration of the graph of Sj(s)

and from the equation (16). The equation

(18) U(J,'z) (SCJ) + z S(j) O() *(z) UJ,z),

leads to

u(J,z) - z Cu(J,z) S_°(J)] &(J) E1*(z)I -S(J) - I .

Postmultiplication by S_(j) leads to z .3Ei.1 (z)] 1 1. The

inner product u(J,z) SO(j) does not vanish, since the matrix

Yz) I - S(J) is nonsingular for 0 < z s 1.
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The vector u(3,z) u expE-*ji(z)tJ'0(j) expES(J)t) dt, is

positive, since the vector p(J) exp[S(J)tI is positive for t > 0,

as was shown in [63. This implies that the eigenvalue (z) of

the irreducible stable matrix S(J) + z S_(J) O(J), is the eigen-

value of maximal real part. The normalization u(J,z) e 1,

readily yields (17).

Lemma 2.

The maximal eigenv4lue X(z) of A*(z) is given by

C
(19) X(z) - fE - E 9j(z)3, for 0 < z s 1,Jul

where f() is the Laplace-Stieltjes transform of the interarrival

time distribution F(-). The corresponding eigenvector u(z) is

given by

(20) U(z) - u(l,z) : ... a u(c,z).

Proof

The vector u(z) is clearly positive and satisfies u(z) e = 1.

It readily follows from (18) that

a(J,z) exp hS(J) + z S°(J) k(J)3tl - exp [ i(z)t] U(,z),

and hence by (5), that

u(z) A*(z) - f '-'(z)] u(z).

This clearly implies (19) and completes the proof.

Let now n be the unique solution in (0,1) of the equation

(14). The vector u(n) * u(l,n) ,.. *u(c,n), is then given by

" , , i ,
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uCJ,n) - rnn-l) - i ,. (n) fij)C~ n) I - S()J " I , for 1 s c.

As shown in Chapter 1 of [83, the vector u(i) is also the left

eigenvector of the matrix R. corresponding to its Perron eigen-

value n.

3. Asymptotic Behavior of the Queue Length Density

Theorem 1

The stationary density of the queue length at arrivals satisfies

(21 I kc+l ki2k) 1X e 'Cx Z) ni + o(n ) as k -
i-kc-

where z is the right eigenvector of R, corresponding to the

eigenvalue n and satisfies u(n) z = 1.

Proof

Let us write u for u(n). A classical property of irre-

ducible, nonnegative matrices now yields that

Ri a nI z u + O(nl), as I w.

Since

iE k x e a -R k'c+l(I-R)-I e,

Formula (21) readily follows.

Remark

We clearly also have

(22) x- x- Ri-c+l n i-c+l i+ o~n as

-i --i ~-l !~ ~ o~i), a i
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This implies that

(23) U as
-i *_ u, as i "

The left hand side is the conditional probability density of

the c-tuple of service phases, given that the arriving customer

finds I customers in the queue. For large i, we find that the

Joint conditional contribution of the c residual service times

has the limit distribution with c-fold Laplace-StieltJes transform

h(sl,...,s c ) - rl I-S(1)]'IS0(l)0...,EScI-S(c)]-1S(c)}

l''c 1 -
c u(j,n) sji-s(J)]-  s°(j).

We see that for large i, the conditional residual service times

in the c servers, given that the arriving customer finds I

customers in the system, are approximately independent. The

marginal distribution of the residual service time for the J-th

server is then approximately the PH-distribution with representa-

tion [u(J,1), S(J) , for 1 ! 5 s c.

4. Asymptotic Behavior of the Stationary Waiting Time Distribution

at Arrivals.

Once the vector x-1 and the matrix R are known, the

probability distribution W(t) of the waiting time at arrivals

under the first-come, first-served discipline, may be'camputed by

solving a finite, highly structured system of differential equations

with constant coefficients. This will be shown by generalizing the

- MM10 " 
I&
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proof, given for the case of the GI/PH/1 queue, in [83 or [93.

For multi-server queues, the practical utility of this result is

severely limited by the dimension m. The proof of this result is

however essential to the derivation of the desired asymptotic

formula for W(').

Let the matrices C and D be defined by

C - S(1) * S(2) S ... 0 S(c),
(211)

D - s(1) B(l) * s(2) 0(2) 0 ... 0 S0 (c) B(c),

where the sumbol 0 is the Kronecker sum of matrices [1. The

distribution W(.) may be viewed as the distribution of the time

till absorption into the state in the Markov process with

generator Q, given by

i a c+l c+2 2 ...

* 0 0 0 0 0 ...

e 1 De C 0 0 0 ...

0+1 0 D C 0 0
(25) Q a

+2__ 0 0 D C 0

c+3 0 0 0 D C

in which the initial probability vector is given by

2EE • + -- , is-i~ s, 1_.,-1
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It is readily seen that the Laplace-Stieltjes transform w(s)

of W(') is given by

-- ~ ~ R1  (sx-c)-iD~ie
(26) w(s) - e + x E o _

imo

a S e + x..-1 "(s) e,

where T*(s) is the square matrix of order m, which satisfies

(27) Ye(s) - I + R Y*s) (sI-C) - I D.

The equation (27) is now transformed in the same manner as discussed

in [9]. If Y(.) is the matrix of mass functions with Laplace-

Stieltjes transform Y'(s) and P(x) is the m -vector obtained by

forming the direct sum of rows of Y(x), then we derive from (27)

that

(28) *(x) - v - v(ISC + RTi D)-1(I2 - expC(IS + RT D)x1}(RTmD),

for x z 0. The vector v is the m2 -vector obtained by forming

the direct sum of the identity matrix. RT is the transpose of the

matrix R.

We now set v - - v(Ic + RT ', and §(x) -

Mv° expC(IC + RTID)x, for x z 0. The m x m matrices V°  and

e(x) have the vectors v and O(x) as the direct sums of their

respective rows. They satisfy the equations

(29) V°0 + R V° D -I,
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and

(30) e,(x) -eCx) C + R e(x) D, e(0) -V °,

for x a 0.

By virtue of (28), the matrix Y(x) is then given by

(31) (x) a I + R V° D - R e(x) D, for x k 0.

The distribution W() is given by

(32) W(x) - M e + 4_ 1 e + x-i R V° D e - A- 1 R e(x) D e,

for x a 0. This expression may be further simplified. We post-

multiply in (29) by e and note that C e + D e - 0. This yields

that V° D e - (I-R)"I e. Upon substitution into (32), we readily

obtain

(33) W(x) - 1 - 3-i R e(x) D e, for x k 0.

We see that the probability distribution W(-) may, in principle,

be computed by first evaluating the matrix V°  and then solving

the matrix-differential equation (30). In order to obtain the

asymptotic formula, we neod a number of preliminary lemmas..

Lemma 3

The matrix C + n D. given by

(34) C + n D a CScl) +n _(l) P(1)30 ... oS(c) + n °(c) (c),

is an irreducible, stable matrix. Its eigenvalue - of maximal

real part is given by

(35) - " ()
C
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The corresponding left eigenvector is given by u u(i). The

corresponding right eigenvector u° , normalized by uu - 1,is

given by the Kronecker product u0 = u(l ) 0 ... 2 u(c), where

(36) u0 () ,-(n)IS(J)_isO(J)in* (n). ( j()I-sCJ )3 -2 s°(J)

for 1 s j s c.

Proof

Since each of the matrices SCJ) + n S(j) O(J), 1 % j s c, is

an irreducible stable matrix, so is the matrix C + n D, (11). The

matrix C + n D is the sum of c matrices of the form

I 9 ... *ES(W) + n '_(J) " ()] a I a ... a I.

This readily yields, by (18), that

c
u(C,+ n D) E j u

The vector u°(J) is clearly a right eigenvector of

S(O) + n _(0) " *(j), corresponding to *j(n). Furthermore

uiQ.n) 10) = i. e u -u.0 u°Cj) 1, the proof

is complete.

Lemma 4

The matrix I 0 C + RT I D has nonnegative off-diagonal

elements and is irreducible. Its eigenvalue of maximal real part

is - . The corresponding left and right eigenvectors are re-

TT 0spectively given by zT i u and ua u Their inner product

1



Is one.

Proof

The off-diagonal elements of 1 2 C + ET 9 D are clearly

nonnegative. The irreducibility of the matrix I 0 C + RT g D

follows from the positivity of R and the Irreducibility of the

representations of the service time distributions.

We have

(ST g u)(I g + RT 8 D) M T It u + n+ ZT I u T J u(C + D)-

ST U)

and a similar calculation for the right eigenvector. Since both

eigenvectors are positive, - is the eigenvalue of maximal real

part [2].

Lemma 5

The vector Irv* v(I 4 C + IT. DY1l, satisfies

(37) vo (U T a u) C-

Also

(38) u D e - (l-

Proof

0It follows from the definition of v that
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Vyou ) .(I TC + R T D)-3(uT a u° ) -1 v~uT Iu).

However

T 2) . uO) u u - 1.

um _ 0

The vectors % are the m unit-vectors of dimension m. This

proves Formula (37).

A typical term of D e is the Kronecker product

e ae m... s_°(j)e ... le. Premultiplication by u -u(1i.)

* u(c) yields

u(J) s°(3) - f(y - l) -  *3Cn) §(J)(E*(1) - S(J) - 1 s(j) -
(Ti - l)- 1 ,3 (),

so that

u D• - ( ) - ) "  W *,(q) "l I-- - Jul J

Theorem 2

The waiting time distribution W(e) satisfies

(39) 1 - W(x) - ( - - -l Z) e " 4x + o(e-CX), as x *

Proof

It follows from the definition of the vector O(W) and the

properties of the matrix I 8 C + R 0 D, that
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!.(X) X 0 o T 0uO) -(SA uJeEx + o(e-eX)

- (1.c T su)e"cx + o~e'EX as x -

The vector z T u is the direct sum of the rows of the matrix

z a u. The preceding formula may therefore be equivalently written

as

Ox) - l(z - u)e-Ex + o(e-9X), as x - -.

Substitution into (33) yields

1 - W(x) - i-Cx R z)Cu D e)e " x + as x .

Since R z - n z, and by using Formula (38), we readily obtain (39).

Remark

Results, similar to those in Theorems 1 and 2, may be proved

for the stationary distributions of the queue length and the

waiting time at an arbitrary time. The proofs proceed along the

same lines as in the single server case, discussed in [9]. The

same decay parameters n and C are obtained, but the multi-

plicative constants are different.

5. Computational Procedure and Applications

The decay parameters n and 4 may be computed together by

elementary algorithms. There are various alternative methods. It
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is advisible to solve the equation

(40) z f- r 4 z)

for n in (0,1) by a method which does not involve derivatives.

The secant or bisection methods may be Implemented with equal ease.

At each stage of the computation, we have two values zI and

z2  satisfying

1 rc
0 fj. I - #j L(zl)J1 n fz 2)j < z2 <

since the right hand side of (40) is increasing. As the next trial

value z' is obtained, either by bisection or the secant method,

the corresponding values #,(z'), 1 s j : c, are computed by

solving the equations

(141) z O(J)t* i(z)I - sWjF 1.S.0(j) - 1

for their unique solutions in the Intervals (-TP1 ), 1 S 3 S C.

One clearly only solves those equations which are actually

different. The monotonicity properties of the (z), proved in

Lemma 1 are useful in solving the equations (41). When the

interval (zl, Z2), which brackets n Is sufficiently small, we

evaluate a final value 10, which is the computed value of n.

The computed value of g is obtained by setting C -- I *(n).J-l

For many PH-distributions of Interest, the Laplace-Stieltjes

transform Is, of course, explicitly available, so that the

equations (41) can then be written In a computationally more
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convenient form.

Except for queues with a very small number of servers and

then only for PH-distributions with few phases, the computation of

the matrix R, and hence of the vectors 'x and z, is not

practically feasible. Even without explicit knowledge of the

constant EC-1 S' the asymptotic results of Theorems 1 and 2 have

practical uses.

With n and C so easily computable, these results may be

used to test the merits of simulation procedures for the queue

length and waiting times in multiserver queues. The estimates of

-log (1 - W(x)3, for example, should for large x lie approximately

on a straight line of slope C. Assuming that the simulation pro-

cedure can correctly identify the parameter C, it should also be

sufficiently accurate to provide a good estimate for the intercept

of the linear asymptote of -log Cl - W(x)3. We will then have an

estimate of x- z, which may be used in the asymptotic formulas

to provide estimates of tail probabilities for the queue length and

waiting time.

As a point of theoretical interest, it appears likely that the

asymptotic results of Theorems 1 and 2 remain valid for the G1/0/c

queue with heterogeneous servers, provided that each of the c

service time distributions have a Laplace-Stieltjes transform with

a negative abscissa of convergence. This may probably be proved by

appropriate continuity arguments and the approximation of the

service time distributions by PH-distributions. This matter, as

A -
L ... ..........
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well as the applications to simulation methodology, will be taken

up elsewhere.

MEN - t7
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